Nanopillar array-based electrochemical aptamer sensor for STX sensitivity detection

Abstract

Saxitoxin (STX) is a cyanotoxin with high toxicity, and therefore, there is an urgent need to develop a facile detection method for STX. In this study, an ordered nanopillar array-based electrochemical aptasensor was fabricated for the high-performance detection of STX. The anti-STX aptamer with methylene blue (MB) incorporated at the 3′-end (MB-Apt) was immobilized at the surface of an Au@PAN nanopillar array electrode and used as the recognition element. The proposed aptasensor demonstrated highly sensitive and selective STX detection because of synergistic catalysis effects of MB and ordered nanopillar arrays along with the selection of MB-Apt. The nanopillar array-based electrochemical aptasensor exhibited high sensitivity over a wide linear concentration range of 1 pM-3 nM with a linear regression equation of ΔI (μA) = 28.0 + 6.9 × log[STX] (R2 = 0.98079) and 3–100 nM with a linear regression equation of ΔI (μA) = 10.7 + 43.4 × log[STX] (R2 = 0.98772), where R is the correlation coefficient. In addition, the limit of detection (LOD) was as low as 1 pM. Furthermore, the designed aptasensor demonstrated excellent selectivity toward STX, preventing interference from neo-STX, okadaic acid, and common metal ions. The presented orderly nanopillar array-based strategy to develop an electrochemical aptasensor for STX detection offers a promising method for developing high-performance electrochemical sensors, and the presented aptasensor should find useful application in the detection of shellfish poison.

Graphical abstract: Nanopillar array-based electrochemical aptamer sensor for STX sensitivity detection

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2024
Accepted
04 Jul 2024
First published
23 Jul 2024

Anal. Methods, 2024, Advance Article

Nanopillar array-based electrochemical aptamer sensor for STX sensitivity detection

J. Li, W. Zheng, Y. Gao, X. Liu, Z. Li and L. Zhang, Anal. Methods, 2024, Advance Article , DOI: 10.1039/D4AY00932K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements