Issue 18, 2024

An electrochemical aptasensor based on silver-thiolated graphene for highly sensitive detection of Pb2+

Abstract

The presence of lead ions (Pb2+) in the environment not only leads to environmental contamination but also poses a significant risk to public health through their migration into food and drinking water. Therefore, the development of rapid and effective techniques for detection of trace amounts of Pb2+ is crucial for safeguarding both the environment and biosafety. In this study, an aptamer-based electrochemical sensor was developed for specific detection of Pb2+ by modifying a polylysine (PLL) coated silver-thiolated graphene (Ag-SH-G) nanocomposite (PLL/Ag-SH-G) on the surface of a glassy carbon electrode, which was further modified with gold nanoparticles (AuNPs) for attachment of aptamers (Apt) that specifically recognized Pb2+. The Ag-SH-G particles were synthesized using a one-step in situ method, resulting in significantly enhanced electrochemical properties upon incorporating Ag nanoparticles into the PLL/Ag-SH-G composite. Coating of the covalently or no-covalently bonded Ag-SH-G particles with PLL provides an excellent supporting matrix, facilitating the assembly of AuNPs and a thiol-modified aptamer for Pb2+. Under optimized conditions, Apt/AuNPs/PLL/Ag-SH-G/GCE exhibited excellent sensing performance for Pb2+ with a wide linear response range (10–1000 nM), a low detection limit (0.047 nM) and extraordinary selectivity. The sensor was employed and satisfactory results were obtained in river water, soil and vegetable samples for the detection of Pb2+.

Graphical abstract: An electrochemical aptasensor based on silver-thiolated graphene for highly sensitive detection of Pb2+

Article information

Article type
Paper
Submitted
22 Feb 2024
Accepted
04 Apr 2024
First published
04 Apr 2024

Anal. Methods, 2024,16, 2905-2912

An electrochemical aptasensor based on silver-thiolated graphene for highly sensitive detection of Pb2+

J. Zhou, C. Hu, S. Li, C. Zhang, Y. Liu, Z. Chen, S. Li, H. Chen and Y. Deng, Anal. Methods, 2024, 16, 2905 DOI: 10.1039/D4AY00322E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements