Preparation and NH3 gas-sensing properties of Ag/β-AgVO3 nanorods

Abstract

NH3 gas sensors operating at room temperature, consisting of Ag nanoparticles decorated β-AgVO3 nanorods (Ag/β-AgVO3 NRs), were fabricated via a facile hydrothermal method without the need for a template. The surface characteristics and compositions of Ag/β-AgVO3 NRs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ag nanoparticles, ranging in diameter from approximately 20 to 40 nm, were dispersed on the surface of monoclinic β-AgVO3 NRs with diameters ranging from 50 to 105 nm and lengths from 0.3 to 1.3 μm. The NH3 gas sensing properties of Ag/β-AgVO3 NRs were studied under both dry air and humid conditions at room temperature. Comparative analysis demonstrated that the Ag/β-AgVO3 NRs exhibited a strong response to NH3 gas under 70% relative humidity (RH) at room temperature compared to α-AgVO3 NRs. Specifically, the response of the Ag/β-AgVO3 NRs to 5 ppm NH3 increased by 2.25 times as the RH varied from 20% to 80% at room temperature. This enhanced response was attributed to the effects of formation of nanoheterojunctions, nano-metallic Ag activity and the conductivity of NH4+ and OH ions induced by the presence of humidity. The room temperature NH3 gas sensors based on Ag/β-AgVO3 NRs demonstrated strong responses to low NH3 concentrations, high selectivity, good reproducibility, and long-term stability, and show promise for the development of low-power and cost-effective NH3 gas sensors for practical applications even under high humidity.

Graphical abstract: Preparation and NH3 gas-sensing properties of Ag/β-AgVO3 nanorods

Article information

Article type
Paper
Submitted
13 Feb 2024
Accepted
24 Apr 2024
First published
25 Apr 2024

Anal. Methods, 2024, Advance Article

Preparation and NH3 gas-sensing properties of Ag/β-AgVO3 nanorods

P. Su and J. Yang, Anal. Methods, 2024, Advance Article , DOI: 10.1039/D4AY00255E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements