Issue 16, 2023

Magnetically controlled bio-inspired elastomeric actuators with high mechanical energy storage

Abstract

Many biological systems are made to operate more quickly, efficiently, and with more power by storing elastic energy. This work introduces a straightforward bioinspired design for the quick manufacture of pre-stressed soft magnetic actuators. The actuator requires a lower magnetic field strength to be activated and can regain its original shape without the need for external stimuli. These characteristics are demonstrated in this work through the creation of actuators with round and helical shape structures inspired by the tendril plant and chameleon's tongue. Both the final form of the actuator and its actuation sequence may be programmed by controlling the direction and strength of the force utilised to pre-stress the elastomeric layer. Analytical models are presented to trace the actuators' energy storage, radius, and pitch. High-speed shape recovery after releasing the magnetic force and a strong grasping force are achieved due to the stored mechanical elastic energy. Experiments are conducted to analyse the shape changes, grasping action, and determine the actuation force. The manufacture of the grippers with zero-magnetic field strength holding capacities of up to 20 times their weight is made possible by the elastic energy that actuators store in their pre-stressed elastomeric layer. The outcomes of our research show that a unique magnetic field-controlled soft actuator can be created in different shapes and designs based on requirements.

Graphical abstract: Magnetically controlled bio-inspired elastomeric actuators with high mechanical energy storage

Article information

Article type
Paper
Submitted
02 Mar 2023
Accepted
30 Mar 2023
First published
31 Mar 2023
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2023,19, 3015-3032

Magnetically controlled bio-inspired elastomeric actuators with high mechanical energy storage

M. Lalegani Dezaki and M. Bodaghi, Soft Matter, 2023, 19, 3015 DOI: 10.1039/D3SM00266G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements