Organic–inorganic hybrid perovskite materials and their application in transistors
Abstract
The emerging hybrid organic–inorganic perovskites (HOIPs) have attracted significant attention owing to their versatile and tunable structures and properties. Employing organic cations, HOIPs can integrate the advantages of both organic and inorganic components. To date, HOIPs have been widely investigated in various fields, including photovoltaics, light-emitting devices, and field-effect transistor (FETs). HOIPs possess characteristics similar to conventional inorganic semiconductors, such as high charge carrier mobility and long diffusion length. Moreover, the capacity of solution processing ensures the facile fabrication of devices. Those advantages make HOIP materials a promising candidate for semiconductors in FETs. The first HOIP-based FET was reported in 1999, which was ten years earlier than the first HOIP-based solar cell. However, currently, reports on perovskite FETs are relatively rare, possibly due to the environment-dependent apparent mobilities, instability, and hysteresis caused by the intrinsic properties of perovskites. In this review, we aim to summarize the strategies developed by the pioneering works to improve the performances of HOIP-based FETs. We begin by providing a brief introduction to structure, properties, and versatile fabrication methods. Afterward, reports on HOIP-based FETs are reviewed. FETs were divided into ambipolar, p-type, n-type, and functional portions, and the potential applications of HOIPs in FETs are highlighted, which aim at being instructive for future investigations.
- This article is part of the themed collections: FOCUS: Perovskite Materials and Devices, 2023 Materials Chemistry Frontiers Review-type Articles and 2023 Materials Chemistry Frontiers HOT articles