Issue 3, 2023

Enhanced motility and interaction of nasopharyngeal carcinoma with epithelial cells in confined microwells

Abstract

The three-dimensional (3D) structure of the extracellular matrix and cell–cell contacts are two important cues to altering cell migration behavior and the tumor formation process. In this work, we designed and fabricated microwell arrays with a grating-patterned bottom in polydimethylsiloxane platforms to systematically study the effects of confinement, changes in topography, and cell–cell contacts on the migration behavior of nasopharyngeal carcinoma (NPC43) and immortalized nasopharyngeal epithelial (NP460) cells by time-lapse imaging. When two types of cells were co-cultured in microwells, the migration speed and spreading area of NPC43 cells were significantly increased, which might be attributed to the heterotypic cell–cell contacts with NP460 cells. On a flat surface, NPC43 cells could not form clusters due to the frequent interruptions by the active movements of NP460 cells. However, in 3D microwell arrays, clusters of NPC43 cells formed on the bottom surface while the majority of NP460 cells migrated onto the sidewalls. These cell clusters could be further processed to form spheroids for drug screening. These results also revealed that the 3D microenvironments and cell–cell contacts could have significant implications for NPC cell migration and initiation of tumor formation, which will provide insight for NPC progression and dissemination.

Graphical abstract: Enhanced motility and interaction of nasopharyngeal carcinoma with epithelial cells in confined microwells

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2022
Accepted
04 Jan 2023
First published
05 Jan 2023

Lab Chip, 2023,23, 511-524

Enhanced motility and interaction of nasopharyngeal carcinoma with epithelial cells in confined microwells

X. Hong, Y. Xu and S. W. Pang, Lab Chip, 2023, 23, 511 DOI: 10.1039/D2LC00616B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements