Constructing a NiMnS electrode with a Mn-rich surface for hydrogen production in anion exchange membrane water electrolyzers†
Abstract
Efficient alkaline hydrogen evolution electrodes must be used for hydrogen production in anion exchange membrane water electrolyzers (AEMWEs). Therefore, we fabricated a NiMnS catalyst with a Mn-rich surface, which was self-supported on Ti paper through one-step electrodeposition. Mn doping endowed the catalyst with a unique hollow morphology and lattice-distorted structure. Consequently, the NiMnS/Ti electrode exhibited a large number of exposed electrochemical surfaces and effective active sites and a high hydrogen evolution reaction (HER) activity. Specifically, in half-cell measurements, the NiMnS/Ti electrode exhibited an overpotential of 65 mV at 10 mA cm−2, which was lower than that of NiS/Ti (102 mV) and indicated its superior HER activity. When the proposed cathode was applied in an AEMWE single cell, the device achieved a high current density of up to 0.9 A cm−2 at a cell potential of 2.0 V.