Issue 37, 2023

Constructing Fe2O3 nanoparticles in nitrogen-doped carbon materials to enhance the electrochemical sensing performance of Pb2+ and Cd2+

Abstract

N-doped carbon materials are known for their high conductivity, rich N content, and high adsorption activity. When combined with Fe2O3 to form nanocomposites, they can improve the conductivity of Fe2O3 and cause significant changes in the electrochemical sensing interface with the influence of their unique electronic structure. In this work, N-doped carbon nanocomposites (Fe2O3@NCNPs-x) modified with Fe2O3 nanoparticles (Fe2O3 NPs) were synthesized by a simple emulsion polymerization method and carbonized under Ar at a high temperature. X-ray photoelectron spectroscopy indicated that compared with undoped Fe2O3 NPs, the π bond of Fe2O3@NCNPs-1.5 was negatively charged due to the lone pair of electrons near the N atom, acting as an electron donor that enhanced the interaction with HMIs and electron transport, therefore generating more active sites on the surface of Fe2O3@NCNPs-1.5. The obtained Fe2+/Fe3+ ratio was about two times higher than that of undoped Fe2O3 NPs (Fe2O3@NCNPs-1.5: Fe2+/Fe3+ = 1.24; Fe2O3 NPs: Fe2+/Fe3+ = 0.61). The surface oxygen vacancy (OV) concentration reached the maximum level (Fe2O3@NCNPs-1.5: OVs/O1s = 41.7%; Fe2O3 NPs: OVs/O1s = 22%). Fe2O3@NCNPs-1.5/GCE also showed enhanced electrochemical performance for detecting Pb2+ and Cd2+, with a limit of detection (LOD, S/N = 3) of 4.92 and 18.79 nM, respectively. Electrochemical adsorption tests suggested that Fe2O3@NCNPs-1.5/GCE had the strongest adsorption capacity for Pb2+ and Cd2+ in comparison with other modified electrodes, suggesting that different N contents led to different absorbability for heavy metal ions (HMIs). Therefore, when the metal oxide nanoparticles are loaded on compatible carriers, the jointly constructed nanocomposites can be used as the active materials for efficiently detecting HMIs, providing a new concept for designing highly active electrochemical sensors.

Graphical abstract: Constructing Fe2O3 nanoparticles in nitrogen-doped carbon materials to enhance the electrochemical sensing performance of Pb2+ and Cd2+

Supplementary files

Article information

Article type
Paper
Submitted
31 May 2023
Accepted
18 Aug 2023
First published
25 Aug 2023

Dalton Trans., 2023,52, 13413-13425

Constructing Fe2O3 nanoparticles in nitrogen-doped carbon materials to enhance the electrochemical sensing performance of Pb2+ and Cd2+

S. Wu, R. Lyu, W. Xiong, X. Xing and H. Li, Dalton Trans., 2023, 52, 13413 DOI: 10.1039/D3DT01664A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements