Enhancing propellant performance through intermolecular interactions: cyclodextrin-based MOF loading in nitrocellulose†
Abstract
Metal–organic frameworks (MOFs) offer promising opportunities for modifying energetic materials due to their micro-porous structure and high performance. In this study, we present a novel green MOF named cyclodextrin-MOF (CD-MOF), which incorporates potassium ions, synthesized using a simple methanol vapor diffusion approach. The CD-MOF incorporates potassium ions and enhances propellant performance through intermolecular force optimization with nitrocellulose (NC). Molecular dynamics simulations reveal stronger interactions between the CD-MOF and NC. The loading of the CD-MOF within NC forms a stable structure with resistance to migration and defense against crystalline precipitation and water absorption. Notably, in static combustion and pyrolysis tests, the CD-MOF exhibits efficient flame and flash inhibition. The thermal degradation and cauterization of the CD-MOF resulted in the formation of a complex microporous material capable of absorbing flammable and harmful gases such as CO, NO, NO2, and N2O. These findings shed light on the superior performance of the CD-MOF compared to conventional inorganic salts, and the comprehensive characterization and molecular simulations provide insights into the unique properties and applications of the CD-MOF, emphasizing its significant contribution to the field of green propellants.