Covalent organic frameworks: linkage types, synthetic methods and bio-related applications
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.