Issue 25, 2023

Fluorescence intensity coded DNA frameworks based on the FRET effect enable multiplexed miRNA imaging in living cells

Abstract

miRNA analysis has played an important role in precise diagnosis, treatment and prognosis of cancer, especially multiplexed miRNA imaging. In this work, a novel fluorescence emission intensity (FEI) encoding strategy was developed based on a tetrahedron DNA framework (TDF) carrier and the FRET effect between Cy3 and Cy5. Six FEI-encoded TDF (FEI-TDF) samples were constructed by tuning the labeling number of Cy3 and Cy5 at the vertexes of the TDF. For fluorescence characterization in vitro, distinct FEIs in the spectra and different colors under ultraviolet (UV) irradiation of FEI-TDF samples were observed. By dividing the ranges of FEIs of samples, the stability of FEIs was highly improved. Based on the ranges of FEIs in each sample, five codes with good discrimination were finally developed. Before the application of intracellular imaging, the excellent biocompatibility of the TDF carrier was proved by CCK-8 assay. The barcode probes based on samples 12, 21 and 11 were designed as example models to realize multiplexed imaging of miRNA-16, miRNA-21 and miRNA-10b in MCF-7 cells with obviously different fluorescence merged colors. FEI-TDFs provide a new research perspective for the development of fluorescence multiplexing strategies in the future.

Graphical abstract: Fluorescence intensity coded DNA frameworks based on the FRET effect enable multiplexed miRNA imaging in living cells

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2023
Accepted
16 May 2023
First published
18 May 2023

Anal. Methods, 2023,15, 3051-3056

Fluorescence intensity coded DNA frameworks based on the FRET effect enable multiplexed miRNA imaging in living cells

X. Zhao, Y. Xu and X. Mi, Anal. Methods, 2023, 15, 3051 DOI: 10.1039/D3AY00578J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements