Issue 27, 2022

A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing

Abstract

Terahertz (THz) plasmonic resonance based on an arbitrarily designed resonance metasurface is the key technique of choice for enhancing fingerprint absorption spectroscopy identification of biomolecules. Here, we report a broadband THz micro-photonics sensor based on a pixelated frequency-agile metasurface and illustrate its application ability to enhance and differentiate the detection of broadband absorption fingerprint spectra. The design uses symmetrical metal C-shape resonators with the functional graphene micro-ribbons selectively patterned into the gaps. A strong electric resonance with a high quality factor was formed, consisting of an electric dipole mode associated with the excitation of a dark toroidal dipole (TD) mode through the coupling from the electric dipole moment of the individual frequency-agile meta-unit. The resonance positions are nearly linearly modulated with the varying Fermi level of graphene. The configuration arranges a certain metapixel of the metasurface to multiple response spectra assembling a one-to-many mapping between spatial and spectral information which is instrumental in greatly shrinking the actual size of the sensor. By the synchronous regulation of graphene and C-shape rings, we have obtained highly surface-sensitive resonances over a wide spectral range (∼1.5 THz) with a spectral resolution less than 20 GHz. The target multiple enhanced absorption spectrum of glucose molecules is read out in a broadband region with high sensitivity. More importantly, the design can be extended to cover a larger spectral region by altering the range of geometrical parameters. Our microphotonic technique can resolve absorption fingerprints without the need for spectrometry and frequency scanning, thereby providing an approach for highly sensitive and versatile miniaturized THz spectroscopy devices.

Graphical abstract: A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing

Article information

Article type
Paper
Submitted
22 Mar 2022
Accepted
29 May 2022
First published
03 Jun 2022

Nanoscale, 2022,14, 9681-9685

A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing

L. Sun, L. Xu, J. Wang, Y. Jiao, Z. Ma, Z. Ma, C. Chang, X. Yang and R. Wang, Nanoscale, 2022, 14, 9681 DOI: 10.1039/D2NR01561G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements