Issue 1, 2022

A targeted self-assembling photosensitizer nanofiber constructed by multicomponent coordination

Abstract

Employing a peptide-based supramolecular photosensitizer nanofiber that combines the flexibility of a self-assembling short peptide and high spatiotemporal precision is a promising approach in photodynamic therapy (PDT). Herein, we developed a versatile multicomponent and multifunctional coordination self-assembling photosensitizer nanofiber based on the combination of a diphenylalanine (FF) short peptide, cell penetrating peptide 44 (CPP44) and 5-(4-aminophenyl)-10,15,20-triphenyl porphine (TPP-NH2), resulting in CPP44-FF-TPP-NH2 nanofibers (CFTNFs). Transmission electron microscopy observations showed the filamentous morphology of CFTNFs. Compared with free TPP-NH2, CFTNFs exhibited a higher cell uptake ability in HepG2 cells and a better tumor targeting ability in in vivo experiments. Furthermore, CFTNFs induced apoptosis and necrosis of more HepG2 cells in vitro and showed higher tumor growth inhibitory activity in vivo. In summary, these results indicated that CFTNFs could lead to greatly enhanced photodynamic treatment efficacy. Moreover, our study provides new opportunities for the development of peptide-based multicomponent coordination self-assembling photosensitizer nanofibers to enhance tumor-specific delivery and the anticancer efficiency.

Graphical abstract: A targeted self-assembling photosensitizer nanofiber constructed by multicomponent coordination

Supplementary files

Article information

Article type
Paper
Submitted
06 Oct 2021
Accepted
03 Nov 2021
First published
19 Nov 2021

Biomater. Sci., 2022,10, 114-123

A targeted self-assembling photosensitizer nanofiber constructed by multicomponent coordination

Q. Zhang, J. Xu, J. Peng and Z. Liu, Biomater. Sci., 2022, 10, 114 DOI: 10.1039/D1BM01559A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements