Issue 23, 2021

Green syntheses of stable and efficient organic dyes for organic hybrid light-emitting diodes

Abstract

Organic hybrid light-emitting diodes (hybrid-LEDs) employ organic dyes as light converters on top of commercial blue inorganic LEDs, replacing incumbent inorganic phosphor light converters synthesized from rare-earth and/or toxic metallic elements to optimize device environmental sustainability. Here, we present two naturally derived organic dyes for hybrid-LEDs, highlighting stability and efficiency enhancement based on a novel “acceptor–acceptor” molecular design. This “acceptor–acceptor” skeleton comprises theobromine and thiadiazole, two electron-withdrawing groups that lower energy levels and suppress photooxidation. This differentiates these dyes from the widely adopted “donor–acceptor” skeleton, where photooxidation is facilitated by the presence of electron-donating units. Simultaneously, sidechains on organic dyes used to enhance solution processability, crucial for film transparency, introduce an additional photooxidation pathway. With this “acceptor–acceptor” skeleton, the destabilization from sidechains was offset by the stability enhancement from the electronic effects in the backbone. When blended within an industrial polymer, poly(styrene-butadiene-styrene) (SBS), their enhanced solubility enables the formation of highly transparent films, crucial for reducing scattering loss in LEDs. Furthermore, resultant dye-SBS films achieved photoluminescence quantum yields (PLQYs) of around 90% under ambient conditions. Taking advantage of their transparency and solution processability, we fabricated a waveguide with this theobromine-dye-SBS composite, which was subsequentially assembled into an edge-lit LED device of no glare and enhanced aesthetics.

Graphical abstract: Green syntheses of stable and efficient organic dyes for organic hybrid light-emitting diodes

Supplementary files

Article information

Article type
Paper
Submitted
04 Apr 2021
Accepted
13 May 2021
First published
13 May 2021

J. Mater. Chem. C, 2021,9, 7274-7283

Author version available

Green syntheses of stable and efficient organic dyes for organic hybrid light-emitting diodes

Y. Huang, T. A. Cohen, P. J. W. Sommerville and C. K. Luscombe, J. Mater. Chem. C, 2021, 9, 7274 DOI: 10.1039/D1TC01567B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements