Issue 18, 2021

Fractal-inspired soft deployable structure: a theoretical study

Abstract

The study of soft deployable structures is an emergent field that is highly correlated with metamaterial design, soft robotics, medical devices, etc. This paper studies a novel two-dimensional (2D) soft deployable structure that has a fractal layout with hierarchically coupled thin walls, which buckles upon actuation and deforms into a “peacock tail” pattern that is over 10 fold its original dimension. Large deflection theory and finite-element (FE) modeling are used to characterize its mechanical performance and to investigate its potential application in multiple fields. Further, 2D FE homogenization is implemented to extend the novel design into an active plane lattice metamaterial, on which parametric studies are carried out to explore its effective stiffness and large strain properties. The results show that, besides excellent deformability, the “peacock tail” soft deployable structure and its lattice metamaterial derivates exhibit intriguing properties such as multi-stiffening, strong anisotropy, zero/negative Poisson's ratio, a unique post-buckling collapse mechanism, etc. Three-dimensional generalization of the fractal compliant system is modeled to elaborate on the practical use of the structures. This paper aims to enrich the spectrum of soft deployable structures, shedding light on the research of novel soft robots, hierarchical structures, and metamaterials.

Graphical abstract: Fractal-inspired soft deployable structure: a theoretical study

Supplementary files

Article information

Article type
Paper
Submitted
03 Jan 2021
Accepted
22 Feb 2021
First published
20 Apr 2021

Soft Matter, 2021,17, 4834-4841

Fractal-inspired soft deployable structure: a theoretical study

Z. Xiong, H. Xiao and X. Chen, Soft Matter, 2021, 17, 4834 DOI: 10.1039/D1SM00006C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements