Issue 11, 2021

Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes

Abstract

Electrocatalytic hydrogenation (ECH) of biomass-derived platform chemicals is a sustainable approach to produce value added fuels and chemicals as compared to the chemo-catalytic hydrogenation pathway. In this work, zinc metal was studied as a novel electrocatalyst for potentiostatic ECH of furfural to furfuryl alcohol (FAL) and 2-methylfuran (MF), products having applications in pharmaceutical, polymer and fuel industries. The activity of zinc was compared to that of other well-known catalysts, copper and nickel. The yield and faradaic efficiency (FE) of furfural ECH was studied for varying electrolyte pH, which was found to significantly affect the FE and product profile. Electrolysis in near-neutral electrolyte (pH 6 to 8) exhibited increased yields and FE as compared to under acidic and alkaline conditions. We attribute this result to the optimum proton concentration in neutral electrolytes that restricts the HER while minimizing side reactions. At neutral pH, the reaction was more selective towards FAL formation than MF. The best activity of the zinc catalyst was obtained with 0.5 M sodium bicarbonate (NaHCO3) electrolyte (pH = 8.4) at −0.7 V/RHE, yielding 73% FE for FAL and 86% FE overall. To the best of our knowledge, this is the highest FE for FAL that has been reported to date. Oxidation of zinc was observed during electrolysis, only in the presence of furfural, suggesting that oxidized zinc may play a role in the reaction mechanism.

Graphical abstract: Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2021
Accepted
02 May 2021
First published
03 May 2021
This article is Open Access
Creative Commons BY-NC license

Sustainable Energy Fuels, 2021,5, 2972-2984

Zinc-electrocatalyzed hydrogenation of furfural in near-neutral electrolytes

M. S. Dhawan, G. D. Yadav and S. Calabrese Barton, Sustainable Energy Fuels, 2021, 5, 2972 DOI: 10.1039/D1SE00221J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements