Issue 34, 2021

Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer's activity from St. John's wort

Abstract

Hyperforones A–J (1–10), ten degraded and reconstructed polycyclic polyprenylated acylphloroglucinols (PPAPs) with six different types of unusual architectures, were isolated from Hypericum perforatum (St. John's wort). Compound 1 is characterized by an unprecedented 1,5-epoxyfuro[3′,4′:1,5]cyclopenta[1,2-c]oxecine ring system; compounds 2 and 3 represent the first PPAPs with a contracted B-ring leading to the unique 5/5 core skeletons; compound 4, a proposed biosynthetic precursor of 2, is defined by an oxonane-2,7-dione architecture; compound 5 features an unusual spiro[furo[3′,4′:1,5]cyclopenta[1,2-b]oxepine-3,2′-oxetane] ring system; compounds 6–8 possess a rare macrocyclic lactone ring in addition to the newly formed C-ring; and compounds 9 and 10 contain a newly formed six-membered C-ring, which constructed the unexpected 6/6 scaffold with the B-ring. Hypothetic biosynthetic pathways to generate these scaffolds starting from the classic [3.3.1]-type PPAPs helped to elucidate their origins and validate their structural assignments. Compounds 4 and 6 simultaneously displayed notable activation of PP2A (EC50: 258.8 and 199.0 nM, respectively) and inhibition of BACE1 in cells (IC50: 136.2 and 98.6 nM, respectively), and showed better activities than the positive controls SCR1693 (a PP2A activator, EC50: 413.9 nM) and LY2811376 (a BACE1 inhibitor, IC50: 260.2 nM). Furthermore, compound 6 showed better therapeutic effects with respect to the reduction of pathological and cognitive impairments in 3 × Tg AD mice than LY2811376. Compound 6 represents the first multitargeted natural product that could activate PP2A and simultaneously inhibit BACE1, which highlights compound 6 as a promising lead compound and a versatile scaffold in AD drug development.

Graphical abstract: Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer's activity from St. John's wort

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Jun 2021
Accepted
20 Jul 2021
First published
26 Jul 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 11438-11446

Unprecedented polycyclic polyprenylated acylphloroglucinols with anti-Alzheimer's activity from St. John's wort

Y. Guo, F. Huang, W. Sun, Y. Zhou, C. Chen, C. Qi, J. Yang, X. Li, Z. Luo, H. Zhu, X. Wang and Y. Zhang, Chem. Sci., 2021, 12, 11438 DOI: 10.1039/D1SC03356E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements