Issue 61, 2021

[3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of γ-attack vs. α-attack using DFT studies

Abstract

A regioselective [3+2] cyclisation reaction between 2-arylidene-1,3-indanedione and ethyl 2,3-butadienoate catalysed by triphenylphosphine has been demonstrated to synthesize functionalised spirocyclic cyclopentenes. The reaction tolerated various electron-rich and electron-deficient aryl substituted 2-arylidene-1,3-indanediones with high to excellent chemical yields (up to 99%) and moderate to good regioselectivity (up to 5 : 1). DFT studies have also been carried out to understand the regioselective nature of this reaction. The results of Frontier molecular orbital calculations and the activation energy (Ea) favour the formation of compound 3a via γ-attack compared to that of 4a via α-attack.

Graphical abstract: [3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of γ-attack vs. α-attack using DFT studies

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2021
Accepted
19 Nov 2021
First published
01 Dec 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 38648-38653

[3+2] regioselective annulation reaction of 2-arylidene-1,3-indandiones towards synthesis of spirocyclopentenes: understanding the mechanism of γ-attack vs. α-attack using DFT studies

S. Anwar, L. Lin, V. Srinivasadesikan, V. B. Gudise and K. Chen, RSC Adv., 2021, 11, 38648 DOI: 10.1039/D1RA07165C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements