Issue 59, 2021, Issue in Progress

Green construction of eco-friendly phosphotungstic acid Sr-MOF catalysts for crystal violet removal and synthesis of coumarin and xanthene compounds

Abstract

There is an urgent need to improve engineering and synthetic chemistry, either through the use of eco-friendly starting materials or the proper design of novel synthesis routes. This reduces the contamination of toxic chemicals and helps the disposal of organic dyes. In the current work, a metal–organic framework-based Sr(II) was fabricated to achieve the desired goal for dye removal and catalysis. Sr-MOF-based phosphotungstic acid (PWA/Sr-MOF) was hydrothermally synthesized to study its adsorption and catalytic activities. Remarkably, about 99.9% of crystal violet (CV) dye was removed using PWA/Sr-MOF within 90 min at room temperature. Various factors have been studied to investigate the optimum conditions such as pH of solution, initial dye concentration, contact time, and temperature. The maximum adsorption capacity of CV dye was reached after 90 min and well fitted the pseudo-second kinetic order and Langmuir adsorption isotherm. Coumarin and xanthene reactions were chosen to test the catalytic activity of the prepared PWA/Sr-MOF at 373 K. Furthermore, structural and chemical characterization of the fabricated samples was obtained using FT-IR, XRD, TGA, DTA, TEM, EDX, and XPS. PWA/Sr-MOF can be considered as a promising and green framework in the material design used to study catalytic and adsorption performances.

Graphical abstract: Green construction of eco-friendly phosphotungstic acid Sr-MOF catalysts for crystal violet removal and synthesis of coumarin and xanthene compounds

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2021
Accepted
11 Nov 2021
First published
19 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 37276-37289

Green construction of eco-friendly phosphotungstic acid Sr-MOF catalysts for crystal violet removal and synthesis of coumarin and xanthene compounds

A. A. Ibrahim, S. L. Ali, M. S. Adly, S. A. El-Hakam, S. E. Samra and A. I. Ahmed, RSC Adv., 2021, 11, 37276 DOI: 10.1039/D1RA07160B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements