Issue 42, 2021, Issue in Progress

Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application

Abstract

In this paper, a 2D molybdenum disulfide (MoS2) nanosheet is prepared via a one-step hydrothermal method as electrode material for supercapacitors. Meanwhile, a series of MoS2−x nanostructures with sulfur vacancies have been successfully obtained in an Ar/H2 mixed atmosphere at different annealing temperatures. The prepared materials were characterized by XRD, HR-TEM, Raman and XPS to identify their morphology and crystal properties. MoS2−x assembled by interconnected nanosheets (MoS2−x-700) provides a maximum specific capacitance of 143.12 F g−1 at a current density of 1.0 A g−1 with 87.1% of initial capacitance reserved after 5000 cycles. The outstanding performance of the annealed MoS2−x nanosheets in sodium storage is mainly attributed to the synergistic effect of the unique interconnected structure and the abundant active vacancy generated by the sulfur vacancies. Atomic models of sulfur vacancy defects on the basal plane, Mo-edge and S-edge were established and the electronic properties of MoS2−x were further evaluated assisted by first principles theory. DFT calculation results show that sulfur vacancy defects can provide additional empty states near the Fermi level and induce unpaired electrons, thus increasing the carrier density and improving electrical conductivity. Our findings in this work provide experimental and theoretical evidence of improving the electrochemical performance of 2H-MoS2 nanosheets by annealing treatment.

Graphical abstract: Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application

Supplementary files

Article information

Article type
Paper
Submitted
24 Jun 2021
Accepted
27 Jul 2021
First published
02 Aug 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 26273-26283

Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application

H. Wang, X. Xu and A. Neville, RSC Adv., 2021, 11, 26273 DOI: 10.1039/D1RA04902J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements