Issue 48, 2021, Issue in Progress

Switching of alternative electrochemical charging mechanism inside single-walled carbon nanotubes: a quartz crystal microbalance study

Abstract

We probed electrochemical ion storage in single-walled carbon nanotubes (SWCNTs) of different diameters in two different organic electrolytes using electrochemical quartz crystal microbalance (EQCM) tracking. The measurements showed that charge storage probed by cyclic voltammetry did not deteriorate when steric effects seemed to hinder the accessibility of counter-ions into SWCNTs, and instead proceeded predominantly by co-ion desorption, as was shown by the decrease in the electrode mass probed by EQCM. The dominant mechanism correlated with the SWCNT diameter/ion size ratio; counter-ion adsorption dominated in the whole potential range when the diameter of SWCNTs was comparable to the size of the largest ion, whereas for larger diameters the charge increase coincided with a decrease in the electrode mass, indicating the dominance of co-ion desorption. The dominance of co-ion desorption was not observed in activated carbon, nor was it previously reported for other carbon materials, and is likely switched on because the carrier density of SWCNT increases with applied potential, and maintains the electrode capacity by co-ion desorption to overcome the steric hindrances to counter-ion adsorption.

Graphical abstract: Switching of alternative electrochemical charging mechanism inside single-walled carbon nanotubes: a quartz crystal microbalance study

Supplementary files

Article information

Article type
Paper
Submitted
07 Jun 2021
Accepted
03 Sep 2021
First published
09 Sep 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 30253-30258

Switching of alternative electrochemical charging mechanism inside single-walled carbon nanotubes: a quartz crystal microbalance study

A. Al-zubaidi, M. Takahashi, Y. Ishii and S. Kawasaki, RSC Adv., 2021, 11, 30253 DOI: 10.1039/D1RA04398F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements