Issue 39, 2021, Issue in Progress

Increased sanitization potency of hydrogen peroxide with synergistic O3 and intense pulsed light for non-woven polypropylene

Abstract

Supplies of respiratory masks have recently become a concern due to the onset of the SARS-CoV-2 pandemic. Sanitization and reuse of masks can alleviate high mask consumption and production stresses. In the present work, improved sanitization potency of vaporous hydrogen peroxide (VHP) treatment of resilient bacterial spores while retaining polymeric filter performance was explored. A batch fumigation chamber with hydrogen peroxide (H2O2) vapor and ozone (O3) is featured, followed by intense pulsed light (IPL) flash treatments. A resilient bacterial indicator, Geobacillus stearothermophilus (G. stearothermophilus), was utilized to compare the efficacy of various H2O2 concentrations in combination with O3 and IPL. It was found that exposure to 30 minutes of 4.01 L min−1 0.03% H2O2 aqueous vapor and 3 g h−1 O3 followed by 10 IPL flashes per side completely inactivated G. stearothermophilus. The xenon sourced IPL irradiation was found to synergistically enhance radical production and strengthen the complementary biocidal interaction of H2O2 with O3. Due to the synergistic effects, H2O2 was able to sanitize at a diluted concentration of 0.03% H2O2. The physical properties, such as surface potential, tensile strength, hydrophobicity, and filtration efficiency of >300 nm saline water aerosol of fibrous polypropylene (PP) sheets, were maintained. In addition, no residue of sanitizers was detected, thus confirming the biosafety and applicability of this method to disposable masks. Performance was benchmarked and compared with commercially available processes. The synergistic regime was found to achieve sterilization of G. stearothermophilus at drastically reduced H2O2 concentrations and in ambient conditions relative to commercial methods.

Graphical abstract: Increased sanitization potency of hydrogen peroxide with synergistic O3 and intense pulsed light for non-woven polypropylene

Article information

Article type
Paper
Submitted
11 May 2021
Accepted
30 Jun 2021
First published
07 Jul 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 23881-23891

Increased sanitization potency of hydrogen peroxide with synergistic O3 and intense pulsed light for non-woven polypropylene

R. Jeong, H. Kumar, S. Jones, A. Sandwell, K. Kim and S. S. Park, RSC Adv., 2021, 11, 23881 DOI: 10.1039/D1RA03675K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements