Issue 3, 2021, Issue in Progress

Effect of Ni/Co mass ratio and NiO–Co3O4 loading on catalytic performance of NiO–Co3O4/Nb2O5–TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde

Abstract

In the direct synthesis of 2-propylheptanol (2-PH) from n-valeraldehyde, a second-metal oxide component Co3O4 was introduced into NiO/Nb2O5–TiO2 catalyst to assist in the reduction of NiO. In order to optimize the catalytic performance of NiO–Co3O4/Nb2O5–TiO2 catalyst, the effects of the Ni/Co mass ratio and NiO–Co3O4 loading were investigated. A series of NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were prepared by the co-precipitation method and their catalytic performances were evaluated. The result showed that NiO–Co3O4/Nb2O5–TiO2 with a Ni/Co mass ratio of 8/3 demonstrated the best catalytic performance because the number of d-band holes in this catalyst was nearly equal to the number of electrons transferred in hydrogenation reaction. Subsequently, the NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were characterized by XRD and XPS and the results indicated that both an interaction of Ni with Co and formation of a Ni–Co alloy were the main reasons for the reduction of NiO–Co3O4/Nb2O5–TiO2 catalyst in the reaction process. A higher NiO–Co3O4 loading could increase the catalytic activity but too high a loading resulted in incomplete reduction of NiO–Co3O4 in the reaction process. Thus the NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and a NiO–Co3O4 loading of 14 wt% showed the best catalytic performance; a 2-PH selectivity of 80.4% was achieved with complete conversion of n-valeraldehyde. Furthermore, the NiO–Co3O4/Nb2O5–TiO2 catalyst showed good stability. This was ascribed to the interaction of Ni with Co, the formation of the Ni–Co alloy and further reservation of both in the process of reuse.

Graphical abstract: Effect of Ni/Co mass ratio and NiO–Co3O4 loading on catalytic performance of NiO–Co3O4/Nb2O5–TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde

Supplementary files

Article information

Article type
Paper
Submitted
19 Oct 2020
Accepted
22 Dec 2020
First published
05 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 1736-1742

Effect of Ni/Co mass ratio and NiO–Co3O4 loading on catalytic performance of NiO–Co3O4/Nb2O5–TiO2 for direct synthesis of 2-propylheptanol from n-valeraldehyde

L. Zhao, H. An, X. Zhao and Y. Wang, RSC Adv., 2021, 11, 1736 DOI: 10.1039/D0RA08903F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements