Issue 16, 2021

Measuring the order parameter of vertically aligned nanorod assemblies

Abstract

Vertically aligned nanorod assemblies are of great interest both for fundamental studies of anisotropic physical properties arising from the structures and for the development of functional devices utilizing such anisotropic characteristics. Simultaneous measurement of the homeotropic order parameter (Shomeo) of assemblies in dynamic states can allow further optimization of the assembly process and the device performance. Although many techniques (e.g. birefringence measurement, SAXS analysis, and high-resolution microscopy) have been proposed to characterise Shomeo, these do not yet meet the essential criteria such as for rapid, in situ and non-destructive analyses. Here, we propose a novel approach employing a unique photoluminescence behaviour of lanthanide-doped crystalline nanorods, of which the emission spectrum contains the detailed information on the structure of the assembly. We demonstrate a rapid in situ determination of Shomeo of Eu3+-doped NaYF4 nanorods of which the orientation is controlled under an external electric field. The method does not require the consideration of polarization and can be performed using a conventional fluorescence microscopy setup. This new methodology would provide a more in-depth examination of various assembled nanostructures and the collective dynamics of their building blocks.

Graphical abstract: Measuring the order parameter of vertically aligned nanorod assemblies

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2020
Accepted
22 Mar 2021
First published
22 Mar 2021

Nanoscale, 2021,13, 7630-7637

Measuring the order parameter of vertically aligned nanorod assemblies

J. Kim, K. Lahlil, T. Gacoin and J. Kim, Nanoscale, 2021, 13, 7630 DOI: 10.1039/D0NR08452B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements