Issue 1, 2022

A highly precise micro-analytical XRF method for compositional characterization of fast breeder reactor fuels

Abstract

Accurate and precise determination of plutonium and uranium in Fast Breeder Reactor (FBR) fuels is one of the most important steps in the chemical quality control of these fuels. Along with high precision, minimization of radioanalytical waste generated during measurements is of equal importance. Till date, routine wet radioanalytical techniques used for this purpose produce a lot of radioactive waste which needed an extensive recovery procedure. This paper describes a novel and simple micro-analytical method for determination of the Pu percentage with respect to uranium in fast reactor nuclear fuels, both carbide and oxide, using micro X-Ray Fluorescence (μ-XRF) spectrometry. The developed methodology requires ∼200 ng of sample for analysis and the radioactivity in such sample specimens is below 500 becquerel. Therefore, these sample specimens could be isolated with a layer of Scotch tape and analyzed. The detection limit for U and Pu, obtained using the developed methodology was ∼60–64 ng mL−1. Using a single calibration plot, the Pu percentage in fuel samples could be determined in the entire concentration range from 10 to 90% for both the fuels. The average precision obtained was 0.23% (1σ; n = 3) for samples having a (U/Pu) concentration of <100 μg mL−1 in the final aliquot (sample deposition volume was 2 μL) and the deviations from the expected results (calculated on the basis of sample preparation) were within 0.21%. The developed methodology minimizes radiological waste to a great extent and reduces radiotoxic burden on the environment. Due to high precision and accuracy of the obtained analytical results, this micro-analytical methodology can evolve as a potential alternative to wet chemical methods used routinely.

Graphical abstract: A highly precise micro-analytical XRF method for compositional characterization of fast breeder reactor fuels

Supplementary files

Article information

Article type
Paper
Submitted
03 Sep 2021
Accepted
12 Nov 2021
First published
15 Nov 2021

J. Anal. At. Spectrom., 2022,37, 130-138

A highly precise micro-analytical XRF method for compositional characterization of fast breeder reactor fuels

K. Sanyal, B. Kanrar, S. S. Suresh and S. Dhara, J. Anal. At. Spectrom., 2022, 37, 130 DOI: 10.1039/D1JA00306B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements