Issue 24, 2021

Combined ionic liquid and supercritical carbon dioxide based dynamic extraction of six cannabinoids from Cannabis sativa L.

Abstract

The potential of supercritical CO2 and ionic liquids (ILs) as alternatives to traditional extraction of natural compounds from plant material is of increasing importance. Both techniques offer several advantages over conventional extraction methods. These two alternatives have been separately employed on numerous ocassions, however, until now, they have never been combined for the extraction of secondary metabolites from natural sources, despite properties that complement each other perfectly. Herein, we present the first application of an IL-based dynamic supercritical CO2 extraction of six cannabinoids (CBD, CBDA, Δ9-THC, THCA, CBG and CBGA) from industrial hemp (Cannabis sativa L.). Various process parameters were optimized, i.e., IL-based pre-treatment time and pre-treatment temperature, as well as pressure and temperature during supercritical fluid extraction. In addition, the impact of different ILs on cannabinoid extraction yield was evaluated, namely, 1-ethyl-3-methylimidazolium acetate, choline acetate and 1-ethyl-3-methylimidazolium dimethylphosphate. This novel technique exhibits a synergistic effect that allows the solvent-free acquisition of cannabinoids from industrial hemp, avoiding further processing steps and the additional use of resources. The newly developed IL-based supercritical CO2 extraction results in high yields of the investigated cannabinoids, thus, demonstrating an effective and reliable alternative to established extraction methods. Ultimately, the ILs can be recycled to reduce costs and to improve the sustainability of the developed extraction process.

Graphical abstract: Combined ionic liquid and supercritical carbon dioxide based dynamic extraction of six cannabinoids from Cannabis sativa L.

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2021
Accepted
18 Nov 2021
First published
18 Nov 2021
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2021,23, 10079-10089

Combined ionic liquid and supercritical carbon dioxide based dynamic extraction of six cannabinoids from Cannabis sativa L.

C. Kornpointner, A. Sainz Martinez, M. Schnürch, H. Halbwirth and K. Bica-Schröder, Green Chem., 2021, 23, 10079 DOI: 10.1039/D1GC03516A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements