Issue 19, 2021

Assessment of the effect of ethanol extracts from Cinnamomum camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system

Abstract

Cinnamomum camphora seeds have multiple bioactivities. There were few studies on the effect of C. camphora seeds on intestinal inflammation in vitro and in vivo. The study aimed to investigate the effects of ethanol extracts from C. camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system. Results showed that the digested ethanol extracts (dEE) were rich in polyphenols, and a total of 17 compounds were tentatively identified using UPLC-LTQ-Orbitrap-MS/MS. dEE increased cell viability, while decreasing the production of reactive oxygen species, and the secretion and gene expression of inflammatory markers (NO, PGE2, TNF-α, IL-1β and IL-6). dEE also down-regulated NF-κB/MAPK pathway activities by suppressing the phosphorylation of relevant signaling molecules (p65, IκBα, ERK and p38), as well as the expression of TLR4 receptor protein. Furthermore, dEE may improve intestinal barrier function by increasing the TEER value, and the expression of tight junction proteins (ZO-1, claudin-1 and occludin). The results suggest the ethanol extracts from C. camphora seed kernel may have strong anti-inflammatory activities, and a potential application in the prevention or treatment of intestinal inflammation and enhancement of intestinal barrier function in organisms.

Graphical abstract: Assessment of the effect of ethanol extracts from Cinnamomum camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2021
Accepted
26 Jul 2021
First published
27 Jul 2021

Food Funct., 2021,12, 9197-9210

Assessment of the effect of ethanol extracts from Cinnamomum camphora seed kernel on intestinal inflammation using simulated gastrointestinal digestion and a Caco-2/RAW264.7 co-culture system

G. Zhang, X. Yan, J. Xia, J. Zhao, M. Ma, P. Yu, D. Gong and Z. Zeng, Food Funct., 2021, 12, 9197 DOI: 10.1039/D1FO01293B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements