Issue 20, 2021

Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro

Abstract

The purpose of the study was to explore the effect of exopolysaccharides (EPSs) of Lactobacillus rhamnosus GG (LGG) on the antioxidative and antiapoptotic activities of intestinal porcine epithelial cells (IPEC-J2). EPSs exhibited promising antioxidative activities, such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical (˙OH) and superoxide anion radical (O2˙) scavenging, as well as ferrous ion chelating ability. Moreover, EPSs of LGG could effectively alleviate the IPEC-J2 oxidative damage induced by H2O2 through the Bcl-2-associated (Bax)/B cell lymphoma-2 (Bcl-2) and Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-erythroid 2-related factor-2 (Nrf2) signaling pathways and up-regulated the intracellular tight junction (TJ)-related proteins. In addition, EPSs significantly improved the survival rates of H2O2-damaged IPEC-J2 cells and had no cytotoxic activity, suggesting that EPSs produced by LGG may be an effective drug for relieving oxidative stress. Our study provided a theoretical basis for exploration of the application of probiotic secondary metabolites in practice.

Graphical abstract: Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro

Article information

Article type
Paper
Submitted
27 Jan 2021
Accepted
20 Jul 2021
First published
21 Jul 2021

Food Funct., 2021,12, 9632-9641

Exopolysaccharides produced by Lactobacillus rhamnosus GG alleviate hydrogen peroxide-induced intestinal oxidative damage and apoptosis through the Keap1/Nrf2 and Bax/Bcl-2 pathways in vitro

J. Li, Q. Li, N. Gao, Z. Wang, F. Li, J. Li and A. Shan, Food Funct., 2021, 12, 9632 DOI: 10.1039/D1FO00277E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements