Issue 2, 2021

Influence of lipid nanoparticle physical state on β-carotene stability kinetics under different environmental conditions

Abstract

Carotenoids are lipophilic compounds that provide important health-related benefits for human body functions. However, they have low water solubility and chemical stability, hence their incorporation in aqueous-based foods requires the use of emulsion-based lipid carriers. This work aimed at elucidating whether their inclusion in emulsion-based Solid Lipid Nanoparticles (SLNs) can provide a protective effect against β-carotene degradation under different environmental conditions in comparison to liquid lipid nanoemulsions. Glyceryl Stearate (GS) was mixed with Medium Chain Trygliceride (MCT) oil to formulate SLNs. SLNs presented a significantly enhanced β-carotene retention and a slower β-carotene degradation kinetics at increasing storage temperature, acidic conditions and light exposure. In fact, SLNs formulated with 5% GS in the lipid phase and stored at 4 °C and pH 7 retained almost 70% of the initially encapsulated β-carotene after 55 days of storage, while it was completely degraded when it was encapsulated in liquid nanoemulsions. Moreover, it was observed that the solid lipid type affects the protective effect that SLNs may confer to the encapsulated lipophilic bioactives. Saturated long chain triglycerides, such as hydrogenated palm oil (HPO) presented slower and lower β-carotene degradation kinetics in comparison to solid lipids composed of MCT, such as Coconut Oil (CNUT) or MCT + 5% of GS in the lipid phase. This work evidences that the incorporation of lipophilic bioactive compounds, such as β-carotene, into SLNs slows down their degradation kinetics which might be attributed to a reduced diffusion of the oxidative species due to the lipid crystalline structure.

Graphical abstract: Influence of lipid nanoparticle physical state on β-carotene stability kinetics under different environmental conditions

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2020
Accepted
23 Dec 2020
First published
28 Dec 2020

Food Funct., 2021,12, 840-851

Influence of lipid nanoparticle physical state on β-carotene stability kinetics under different environmental conditions

H. H. de Abreu Martins, A. Turmo-Ibarz, R. Hilsdorf Piccoli, O. Martín-Belloso and L. Salvia-Trujillo, Food Funct., 2021, 12, 840 DOI: 10.1039/D0FO01980A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements