Photoluminescence of monolayer MoS2 modulated by water/O2/laser irradiation†
Abstract
The low photoluminescence (PL) quantum yields of transition metal dichalcogenide monolayers have been a limiting factor for their optoelectronic applications. Various and even inconsistent mechanisms have been proposed to modulate their PL efficiencies. Herein, we use PL/Raman microspectroscopy and the corresponding in situ mapping, atomic force microscopy, and field-effect transistor (FET) characterization to investigate the changes in the structural and optical properties of monolayer MoS2. Relatively low power density (<4.08 × 105 W cm−2) of laser irradiation in ambient air can cause a slight PL suppression effect on monolayer MoS2, whereas relatively high power density (∼1.02 × 106 W cm−2) of laser irradiation brings significant PL enhancement. Experiments under different atmospheres reveal that the laser-irradiation-induced enhancement only occurs in the atmosphere containing O2 and is more remarkable in pure O2. In addition, physically adsorbed water can also induce PL enhancement of monolayer MoS2. FET devices suggest that the adsorbed water produces a p-doping effect on MoS2, and the laser irradiation in ambient air generates an n-doping effect, and both types of doping can enhance the PL intensity. The island-shaped defects caused by laser irradiation can be stabilized by oxygen atoms and act as trapping centers for excited trions or electrons, thus reducing the non-radiative recombination ratio and enhancing the PL intensity. The physically adsorbed water works in a similar way. A low power density of laser irradiation can sweep away the originally adsorbed H2O on the surface, thus reducing the PL.
- This article is part of the themed collection: 2021 PCCP HOT Articles