Issue 48, 2021

Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II

Abstract

In the first steps of natural oxygenic photosynthesis, sunlight is used to oxidize water molecules to protons, electrons and molecular oxygen. This reaction takes place on the Mn4Ca cluster located in the reaction centre of Photosystem II (PSII), where the cluster is assembled and continuously repaired through a process known as photoactivation. Understanding the molecular details of such a process has important implications in different fields, in particular inspiring synthesis and repair strategies for artificial photosynthesis devices. In this regard, a detailed structural and dynamic characterization of Photosystem II lacking a Mn4Ca cluster, namely apo PSII, is a prerequisite for the full comprehension of the photoactivation. Recently, the structure of the apo PSII was resolved at 2.55 Å resolution [Zhang et al., eLife, 2017, 6, e26933], suggesting a pre-organized structure of the protein cavity hosting the cluster. Anyway, the question of whether these findings are a feature of the method used remains open. Here, by means of classical Molecular Dynamics simulations, we characterized the structural and dynamic features of the apo PSII for different protonation states of the cluster cavity. Albeit an overall conformational stability common to all investigated systems, we found significant deviations in the conformation of the side chains of the active site with respect to the X-ray positions. Our findings suggest that not all residues acting as Mn ligands are pre-organized prior to the Mn4Ca formation and previous local conformational changes are required in order to bind the first Mn ion in the high-affinity binding site.

Graphical abstract: Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2021
Accepted
15 Nov 2021
First published
15 Nov 2021

Phys. Chem. Chem. Phys., 2021,23, 27428-27436

Structural and dynamic insights into Mn4Ca cluster-depleted Photosystem II

D. Narzi and L. Guidoni, Phys. Chem. Chem. Phys., 2021, 23, 27428 DOI: 10.1039/D1CP02367E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements