Issue 33, 2021

Dichotomy between heterotypic and homotypic interactions by a common chemical law

Abstract

It is now well established that chemical systems evolve as a function of the frequency at which their individual chemical components interact. This notion is seemingly embedded into a ubiquitous chemical law which proposes that the rate of elementary chemical interactions is proportional to the Product of Interactant Concentrations (PIC) by a rate constant. Here, it is shown that, while the PIC is always proportional to the frequency at which interactants simultaneously collide (Interactant Collision Frequency, or ICF), the coefficient of proportionality between PIC and ICF diverges as a function of the number of identical interactants, a property hereby defined as “homo-molecularity”. To eliminate the divergence between heterotypic and homotypic chemical interactions, the PIC must be divided by the factorial of homo-molecularity. Although this correction may not be practically essential for studies in which the homo-molecularity of chemical interactions is unchanged, it becomes critical when the goal is to compare interaction rates between similar chemical systems differing by their homo-molecularity, such as when interactants are purposefully modified for de novo design of heterotypic interactions, or when the goal is to compare theoretically-predicted rates of homotypic interactions with those that are empirically-determined by varying interactant concentrations.

Graphical abstract: Dichotomy between heterotypic and homotypic interactions by a common chemical law

Article information

Article type
Paper
Submitted
17 May 2021
Accepted
10 Jun 2021
First published
09 Jul 2021
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2021,23, 17761-17765

Dichotomy between heterotypic and homotypic interactions by a common chemical law

J. J. Lacroix, Phys. Chem. Chem. Phys., 2021, 23, 17761 DOI: 10.1039/D1CP02171K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements