Issue 23, 2021

Intrinsically radiopaque and antimicrobial cellulose based surgical sutures from mechanically powerful Agave sisalana plant leaf fibers

Abstract

The judicious configuration of a flexible radiopaque suture would be exemplary to facilitate effortless tracking and precise diagnosis of the sutured surgical site by various X-ray assisted imaging modalities and simultaneously serve as a complementary tool for monitoring the fate of the suture material during the post-operative course. A unique radiopaque cellulose based surgical suture (RF) with good mechanical properties was developed by strategically controlled mercerization and bleaching of mechanically strong natural cellulosic fibers extracted from Agave sisalana plant leaves followed by the facile dip-coating of SrO integrated polylactic acid (PLA). RF exhibited admirable straight-pull tensile strength (184 MPa) and commendable contrast enhancement (277.4%) under digital X-ray radiographic imaging which was further validated by micro-CT analysis. Further, RF has a controlled hydrolytic degradation profile favorable for surgical suturing (mass loss ∼22% in 28 days). The microporous surface architecture of RF (pore size < 10 μm) as a result of SrO–PLA coating enabled the loading of antibiotic (ciprofloxacin) deep inside the pores with a cumulative release of 24% at 28 days under physiological conditions substantiating its feasibility to be used as an efficient antimicrobial suture (CRF) that prevents possible bacterial infections at the surgical site. This has been demonstrated by antibacterial disc diffusion assay performed against two Gram-positive and two Gram-negative bacterial strains. Significantly, both RF and CRF are highly biocompatible as confirmed by MTT assay and F-actin staining. Hence, CRF would be a good biocompatible suture candidate holding good tensile properties, exceptional antimicrobial property and intrinsic radiopacity retention for a period >28 days.

Graphical abstract: Intrinsically radiopaque and antimicrobial cellulose based surgical sutures from mechanically powerful Agave sisalana plant leaf fibers

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2021
Accepted
10 Oct 2021
First published
12 Oct 2021

Biomater. Sci., 2021,9, 7944-7961

Intrinsically radiopaque and antimicrobial cellulose based surgical sutures from mechanically powerful Agave sisalana plant leaf fibers

K. R. Sneha, P. S. Steny and G. S. Sailaja, Biomater. Sci., 2021, 9, 7944 DOI: 10.1039/D1BM01316E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements