Issue 18, 2020

Layered VSe2: a promising host for fast zinc storage and its working mechanism

Abstract

Zinc ion batteries have attracted increasing research attention because of their unique merits (low cost, high safety, etc.). However, poor cycle stability, low energy density and sluggish reaction kinetics are still the major challenges for their further development. Exploring electrode materials with high capacity, durability and fast Zn2+ ion diffusion is crucial to address the aforementioned challenges. Herein, we demonstrate that layered VSe2 with a large interlayer spacing could exhibit excellent Zn storage behavior. Even with a micro-sized morphology, it exhibits a high specific reversible capacity of 250.6 and 132.6 mA h g−1 at 200 and 5000 mA g−1 and good cycle life. The excellent rate performance is comparable to or even higher than those of other nanosized Zn host materials reported in the literature. The good electrical conductivity, large interlayer spacing and pseudocapacitive storage are responsible for its good performance. Combined electrochemical investigation with X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and scanning electron microscopy techniques reveals that VSe2 undergoes an intercalation/de-intercalation process with good structural stability during cycling, accompanied by the redox of the vanadium element.

Graphical abstract: Layered VSe2: a promising host for fast zinc storage and its working mechanism

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2020
Accepted
16 Apr 2020
First published
16 Apr 2020

J. Mater. Chem. A, 2020,8, 9313-9321

Layered VSe2: a promising host for fast zinc storage and its working mechanism

L. Wang, Z. Wu, M. Jiang, J. Lu, Q. Huang, Y. Zhang, L. Fu, M. Wu and Y. Wu, J. Mater. Chem. A, 2020, 8, 9313 DOI: 10.1039/D0TA01297A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements