Issue 50, 2020

Chitin derived biochar for efficient capacitive deionization performance

Abstract

The selection and preparation of an electrode material is the core of capacitive deionization. In order to obtain a material with a good deionization properties, we have designed an environmentally-friendly and simple way of preparing biochar. In this work, biochar was prepared by a thermal-deposition method and after chemical modification it was characterized with a scanning electron microscope (SEM), Fourier transform infrared spectrophotometer (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The specific surface area of biochar modified by KOH is as high as 833.76 m2 g−1, but the specific surface area of the unmodified electrode material is only 126.43 m2 g−1. The electrochemical analysis (CV and EIS) of the biochar indicates that HC-800 has a lower charge transfer resistance and a higher specific capacitance, where the specific capacity of HC-800 reaches 120 F g−1. A CDI property analysis of HC-800 shows a better electrosorption capacity of 11.52 mg g−1 and better regeneration and cycling stability than CS-800. The desalination amount remains 87.23% after several cycles.

Graphical abstract: Chitin derived biochar for efficient capacitive deionization performance

Article information

Article type
Paper
Submitted
25 Jun 2020
Accepted
31 Jul 2020
First published
14 Aug 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 30077-30086

Chitin derived biochar for efficient capacitive deionization performance

P. Li, T. Feng, Z. Song, Y. Tan and W. Luo, RSC Adv., 2020, 10, 30077 DOI: 10.1039/D0RA05554A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements