Issue 67, 2020, Issue in Progress

A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition

Abstract

Nowadays, it is necessary and challenging to prepare monolithic catalysts, which are ready for use, preventing the tedious and complicated integration procedure of the powder materials onto a porous substrate. Herein, Cu2O nanoparticles are successfully synthesized onto a porous Cu foam in one pot via the surface oxidation, coordination and precipitation reactions in a NH4OH and HCl solution, and the optimum synthesis conditions are a NH3 : HCl ratio of 1 : 0.9, oxidation temperature of 80 °C and time of 18 h. The obtained Cu2O/Cu catalyst (mostly <100 nm) shows a highly active O3 decomposition performance with >98% and >80% conversion efficiency in dry and 90% relative humidity air for >10 h at an O3 concentration of 20 ppm and a gas hourly space velocity of 12 500 h−1. The high efficiency can be attributed to the porous Cu foam providing a large contact area, abundant crystal defects in the nanometer-sized Cu2O materials serving as the active sites, and also to the Schottky barrier formed in the Cu2O/Cu interface facilitating the electron transfer for O3 degradation. All these results show the potency of the easily fabricated monolithic Cu2O/Cu catalyst for the highly efficient O3 contaminant removal.

Graphical abstract: A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2020
Accepted
16 Sep 2020
First published
10 Nov 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 40916-40922

A one-pot synthesis of a monolithic Cu2O/Cu catalyst for efficient ozone decomposition

M. G. Rahimi, A. Wang, G. Ma, N. Han and Y. Chen, RSC Adv., 2020, 10, 40916 DOI: 10.1039/D0RA05157H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements