Issue 21, 2020

Omni-direction PERC solar cells harnessing periodic locally focused light incident through patterned PDMS encapsulation

Abstract

Photovoltaic panels based on crystalline Si solar cells are the most widely utilized renewable source of electricity, and there has been a significant effort to produce panels with a higher energy conversion efficiency. Typically, these developments have focused on cell-level device modifications to restrict the recombination of photo-generated charge carriers, and concepts such as back surface field, passivated emitter and rear contact (PERC), interdigitated back contact, and heterojunction with intrinsic thin layer solar cells have been established. Here, we propose quasi-Fermi level control using periodic local focusing of incident light by encapsulation with polydimethylsiloxane to improve the performance of solar cells at the module-level; such improvements can complement cell-level enhancements. Locally focused incident light is used to modify the internal quasi-Fermi level of PERC solar cells owing to the localized photon distribution within the cell. Control of the local focusing conditions induces different quasi-Fermi levels, and therefore results in different efficiency changes. For example, central focusing between fingers enhances the current density with a reduced fill factor, whereas multiple local focusing enhances the fill factor rather than the current density. Here, these effects were explored for various angles of incidence, and the total electrical energy production was increased by 3.6% in comparison to a bare cell. This increase is significant as conventional ethylene vinyl acetate-based encapsulation reduces the efficiency as short-wavelength light is attenuated. However, this implies that additional module-scale studies are required to optimize local focusing methods and their synergy with device-level modifications to produce advanced photovoltaics.

Graphical abstract: Omni-direction PERC solar cells harnessing periodic locally focused light incident through patterned PDMS encapsulation

Supplementary files

Article information

Article type
Paper
Submitted
15 Jan 2020
Accepted
08 Mar 2020
First published
26 Mar 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 12415-12422

Omni-direction PERC solar cells harnessing periodic locally focused light incident through patterned PDMS encapsulation

M. J. Yun, Y. H. Sim, D. Y. Lee and S. I. Cha, RSC Adv., 2020, 10, 12415 DOI: 10.1039/D0RA00439A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements