Issue 6, 2020, Issue in Progress

Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode

Abstract

Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly 3,4-ethylenedioxythiophene (PEDOT), play an important role in the application of pseudocapacitors. It is necessary to explore the effects of different conductive polymers in electrode composites. Herein, we prepare zinc sulfide/reduced graphene oxide (ZnS/RGO) by the hydrothermal method, and conductive polymers (PANI, PPy, PTh and PEDOT) doped with the same mass ratio (polymer to 70 wt%) via in situ polymerization on the surface of ZnS/RGO composite. For the supercapacitor application, the ZnS/RGO/PANI ternary electrode composite possesses the best capacitance performance and cycle stability out of all of the polymer-coated ZnS/RGO composites. In the three-electrode system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 1045.3 F g−1 and 160% at 1 A g−1 after 1000 loops. In a two-electrode symmetric system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 722.0 F g−1 and 76.1% at 1 A g−1 after 1000 loops, and the greatest energy and power density of the ZnS/RGO/PANI electrode are 349.7 W h kg−1 and 18.0 kW kg−1. In addition, conductive polymers can effectively improve the voltage range of the electrode composites in 6 M KOH electrolyte for the two-electrode system. The discharge voltage ∼1.6 V makes them promising electrode materials for supercapacitors.

Graphical abstract: Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2019
Accepted
13 Jan 2020
First published
17 Jan 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 3122-3129

Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode

Z. Xu, Z. Zhang, H. Yin, S. Hou, H. Lin, J. Zhou and S. Zhuo, RSC Adv., 2020, 10, 3122 DOI: 10.1039/C9RA07842H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements