Issue 43, 2020

Substituted glycolides from natural sources: preparation, alcoholysis and polymerization

Abstract

Polylactides, polyglycolides and copolymers containing both glycolate and lactate fragments are biocompatible and biodegradable materials that can be used for environmentally friendly packaging, 3D printing, surgery, drug delivery and other applications. Here we present a first comparative study of a series of 1,4-dioxan-2,5-diones (glycolides: MeGL, iPrGL, iBuGL, BnGL, PhGL and MePhGL) that can be synthesized from natural L-α-hydroxy acids or L-α-amino acids. The formation of (R,R)(S,S)-MePhGL was confirmed by X-ray diffractometry and explained using density functional theory (DFT). We found that diester fragments are retained during the non-catalytic methanolysis of these compounds and that ring-opening regoiselectivity depends on the bulkiness of the substituents. Ring-opening polymerization, catalyzed by 1,5,7-triazabicyclo[4.4.0]undec-5-ene, yielded alkyl-substituted polyglycolides with given MWs. Controlled polymerization of PhGL was possible at low monomer/initiator ratios, while (R,R)/(S,S)-MePhGL formed oligomers and epimerized products. DFT modeling provided an explanation for the observed patterns based on the ease of enolization and the stability of the enolate-anions of phenyl-substituted glycolides. Solutions of MeGL, iPrGL, iBuGL, BnGL and PhGL homopolymers in hexafluoroisopropanol were electrospun into fibrous mats whose morphologies, mechanical characteristics, biodegradabilities and thermal properties varied widely and depended on the substituents on the glycolide.

Graphical abstract: Substituted glycolides from natural sources: preparation, alcoholysis and polymerization

Supplementary files

Article information

Article type
Paper
Submitted
10 Sep 2020
Accepted
11 Oct 2020
First published
12 Oct 2020

Polym. Chem., 2020,11, 6890-6902

Substituted glycolides from natural sources: preparation, alcoholysis and polymerization

I. E. Nifant'ev, A. V. Shlyakhtin, V. V. Bagrov, A. N. Tavtorkin, P. D. Komarov, A. V. Churakov and P. V. Ivchenko, Polym. Chem., 2020, 11, 6890 DOI: 10.1039/D0PY01297A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements