Issue 32, 2020

Branched aramid nanofiber-polyaniline electrodes for structural energy storage

Abstract

Strong electrodes with good energy storage capabilities are necessary to accommodate the current needs for structural and flexible electronics. To this end, conjugated polymers such as polyaniline (PANI) have attracted much attention due to their exceptional energy storage performance. However, PANI is typically brittle and requires the use of substrates for structural support. Here, we report a strategy for developing free-standing structural supercapacitor and battery electrodes based on PANI. More specifically, aniline is polymerized in the presence of branched aramid nanofibers (BANFs) and single walled carbon nanotubes (SWCNTs). This results in a network morphology that allows for efficient load transfer and electron transport, leading to electrodes with capacity values up to 128 ± 5 mA h g−1 (vs. a theoretical capacity of 147 mA h g−1), Young's modulus of 4 ± 0.5 GPa, and tensile strength of 40 ± 4 MPa. Furthermore, the charge storage mechanism is investigated, in which both Faradaic and non-Faradaic contributions are observed. This work demonstrates an efficient strategy for designing structural electrodes based on conjugated polymers.

Graphical abstract: Branched aramid nanofiber-polyaniline electrodes for structural energy storage

Supplementary files

Article information

Article type
Paper
Submitted
16 Jun 2020
Accepted
30 Jul 2020
First published
05 Aug 2020

Nanoscale, 2020,12, 16840-16850

Author version available

Branched aramid nanofiber-polyaniline electrodes for structural energy storage

P. Flouda, A. H. Quinn, A. G. Patel, D. Loufakis, D. C. Lagoudas and J. L. Lutkenhaus, Nanoscale, 2020, 12, 16840 DOI: 10.1039/D0NR04573J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements