Dynamics of lattice defects in mixed DNA origami monolayers†
Abstract
The surface-assisted hierarchical assembly of DNA nanostructures into regular lattices is not only a promising route toward the fabrication of molecular lithography masks over macroscopic surface areas, but also represents an intriguing model system that enables the direct real-time observation of interface-related dynamic phenomena such as adsorption, desorption, and diffusion that are hardly accessible in other lattice-forming systems. In this work, we employ in situ high-speed atomic force microscopy to investigate the development of mixed DNA origami monolayers consisting of DNA origami triangles with threefold symmetry in the presence of rectangular DNA origami impurities with fourfold symmetry. The dynamic formation and annealing of the resulting defects is monitored in dependence of the triangle-to-rectangle ratio and correlated with the achieved lattice order. We find that the overall order of the formed DNA origami monolayer is rather resilient with regard to the presence of impurities. We even find indications that the deliberate addition of impurities at low concentrations may lead to slightly improved lattice order, presumable because they facilitate the dynamic rearrangement of neighboring lattice triangles and thus aid the annealing of non-impurity defects. Deliberate doping of DNA origami lattices with differently shaped impurities during assembly may thus provide a route toward further enhancing lattice quality via impurity-assisted annealing of lattice defects.