Issue 16, 2020

Constructing a novel and high-performance liquid nanoparticle additive from a Ga-based liquid metal

Abstract

The development of a high-performance nanoparticle (NP) additive for lubricating oil is a research hotspot for the tribology and engineering areas. In this study, the concept of a novel liquid nano-additive has been proposed based on the emergence of Ga-based liquid metals (GLMs), which display excellent extreme-pressure and high-temperature lubricity. Herein, the liquid NPs (designated as GLM-NP/C12) were prepared from a GLM droplet through the ultrasonic method, modified with 1-dodecanethiol, and are mainly distributed at 286 ± 21 nm. They have a core–shell structure with liquid-state GLM on the inside, and gallium oxide and a self-assembled alkylthiolate monolayer on the outside. In terms of the tribological performance, GLM-NP/C12s have a wonderful dispersion-stability in PAO10 oil, and provide excellent anti-adhesion, friction-reducing, and wear-resistance properties. When the additive concentration was 0.17 wt% in PAO10, the friction coefficient was reduced by 39% and the wear rate was reduced by 93% compared to those lubricated by the neat PAO10. This kind of liquid nano-additive has the advantages of easy preparation, internal composition regulation and recyclability, compared to conventional solid NPs. In addition, the liquid NPs were readily introduced into the frictional interfaces. More generally, the optimal additive concentration of the liquid NPs was much lower than that of the solid NPs. This observation has important implications for understanding the differences of the lubrication mechanisms between the solid and liquid nano-additives, and may provide a new design method and strategy of nano-additives for lubricating oil.

Graphical abstract: Constructing a novel and high-performance liquid nanoparticle additive from a Ga-based liquid metal

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2019
Accepted
01 Apr 2020
First published
01 Apr 2020

Nanoscale, 2020,12, 9208-9218

Constructing a novel and high-performance liquid nanoparticle additive from a Ga-based liquid metal

J. Guo, J. Cheng, H. Tan, Q. Sun, J. Yang and W. Liu, Nanoscale, 2020, 12, 9208 DOI: 10.1039/C9NR10621A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements