Issue 1, 2021

Targeted metabolomics reveals dynamic portrayal of amino acids and derivatives in triple-negative breast cancer cells and culture media

Abstract

Triple-negative breast cancer (TNBC) is well-known for its metastatic aggressiveness and poor survival prognosis, accounting for nearly a quarter of cases in breast cancer. We performed intra- and extra-cellular profiling of 40 amino acids and derivatives on three cell lines and their culture media, including TNBC, non-TNBC and normal breast epithelial cells, using HILIC-MS/MS. Characteristic metabolic alteration of amino acids and derivatives was observed in TNBC cells, compared to non-TNBC cells, especially in correlated intra- and extra-cellular metabolic pathways. Intra-cellularly, quantified glutamic acid, β-alanine, aspartic acid, glutathione, N-acetyl-serine and N-acetyl-methionine were most significantly increased (>2-fold, p < 0.01 and VIP > 1) in TNBC cells. Extra-cellularly, significantly increased uptake of glutamine, serine, β-alanine, and lysine and elevated excretion of glutamic acid and L-cysteine-glutathione (p < 0.01 and VIP > 1) were observed by TNBC cells from or to their cell culture media. This study depicted a novel dynamic portrayal of metabolic dysregulation between TNBC and non-TNBC cells, correlated in both intra- and extra-cellular amino acid profiles. Quantification of these distinctive metabolites of TNBC cells might offer advanced understanding and new treatment targets for TNBC.

Graphical abstract: Targeted metabolomics reveals dynamic portrayal of amino acids and derivatives in triple-negative breast cancer cells and culture media

Supplementary files

Article information

Article type
Research Article
Submitted
21 Sep 2020
Accepted
17 Nov 2020
First published
23 Nov 2020

Mol. Omics, 2021,17, 142-152

Targeted metabolomics reveals dynamic portrayal of amino acids and derivatives in triple-negative breast cancer cells and culture media

F. Kou, B. Zhu, W. Zhou, C. Lv, Y. Cheng and H. Wei, Mol. Omics, 2021, 17, 142 DOI: 10.1039/D0MO00126K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements