Issue 35, 2020

Surface charging parameters of charged particles in symmetrical electrolyte solutions

Abstract

Surface electric charge of dispersed particles is an essential determinant of physicochemical properties, coagulation and flocculation processes, and stability of colloidal solutions. Size-dependence of surface potential, charge density, and total surface charge of suspended charged particles has recently received attention in the literature. Despite the clear significance of understanding such dependence, very few studies have been devoted to this problem, with contradictory results of the relationship type. Currently, there is no analytical formula to represent explicit relationships between surface charging parameters and particle size. This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution. First, a non-dimensional approach is adopted to simplify the problems, overcoming the difficulty of dealing with multiple influential variables. Then, to reduce the degrees of freedom of the problems under consideration, Gauss's law is combined with the condition of electro-neutrality in an electrical double layer (EDL). Next, the resulting complex integral equations are solved to construct characteristic curves and to express the dimensionless surface charging parameters explicitly as a function of the dimensionless particle radius. The new theoretical expressions are founded on approximate analytical and numerical solutions of the nonlinear Poisson–Boltzmann (PB) equation in cylindrical and spherical geometries. Afterwards, the solutions of the non-dimensionalized problems are dimensionalized to derive accurate explicit closed-form expressions, describing how surface charging parameters are related to the radius of a charged particle, properties of the solution, and thermodynamic conditions. These analytical formulas enable researchers to properly determine surface potential, surface charge density, total surface charge, and radius of dispersed particles by characterizing only one of them. Finally, the validity of the commonly-held hypothesis that surface charge density is independent of particle size is examined at the end of this study.

Graphical abstract: Surface charging parameters of charged particles in symmetrical electrolyte solutions

Article information

Article type
Paper
Submitted
20 May 2020
Accepted
31 Jul 2020
First published
03 Aug 2020

Phys. Chem. Chem. Phys., 2020,22, 20123-20142

Surface charging parameters of charged particles in symmetrical electrolyte solutions

H. Saboorian-Jooybari and Z. Chen, Phys. Chem. Chem. Phys., 2020, 22, 20123 DOI: 10.1039/D0CP02725A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements