Issue 37, 2020

Distance measurements between carbon and bromine using a split-pulse PM-RESPDOR solid-state NMR experiment

Abstract

Solid-state nuclear magnetic resonance has long been used to probe atomic distances between nearby nuclear spins by virtue of the dipolar interaction. New technological advances have recently enabled simultaneous tuning of the radio-frequency resonance circuits to nuclei with close Larmor frequencies, bringing great promise, among other experiments, also to distance measurements between such nuclei, in particular for nuclei with a spin larger than one-half. However, this new possibility has also required modifications of those experiments since the two nuclei cannot be irradiated simultaneously. When measuring distances between a spin S = 1/2 and a quadrupolar spin (S > ½), this drawback can be overcome by splitting the continuous-wave recoupling pulse applied to the quadrupolar nucleus. We show here that a similar adjustment to a highly-efficient phase-modulated (PM) recoupling pulse enables distance measurements between nuclei with close Larmor frequencies, where the coupled spin experiences a very large coupling. Such an experiment, split phase-modulated RESPDOR, is demonstrated on a 13C–81Br system, where the difference in Larmor frequencies is only 7%, or 11.2 MHz on a 14.1 T magnet. The inter-nuclear distances are extracted using an unscaled analytical formula. Since bromine usually experiences particularly high quadrupolar couplings, as in the current case, we suggest that the split-PM-RESPDOR experiment can be highly beneficial for research on bromo-compounds, including many pharmaceuticals, where carbon–bromine bonds are prevalent, and organo-catalysts utilizing the high reactivity of bromides. We show that for butyl triphenylphosphonium bromide, the solid-state NMR distances are in agreement with a low-hydration compound rather than a water-caged semi-clathrate form. The split-PM-RESPDOR experiment is suitable for distance measurements between any quadrupolar ↔ spin-1/2 pair, in particular when the quadrupolar spin experiences a significantly large coupling.

Graphical abstract: Distance measurements between carbon and bromine using a split-pulse PM-RESPDOR solid-state NMR experiment

Supplementary files

Article information

Article type
Paper
Submitted
02 Mar 2020
Accepted
08 Jul 2020
First published
13 Jul 2020

Phys. Chem. Chem. Phys., 2020,22, 21022-21030

Distance measurements between carbon and bromine using a split-pulse PM-RESPDOR solid-state NMR experiment

M. Makrinich, M. Sambol and A. Goldbourt, Phys. Chem. Chem. Phys., 2020, 22, 21022 DOI: 10.1039/D0CP01162B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements