Issue 8, 2020

Palladium-catalyzed oxidative homocoupling of pyrazole boronic esters to access versatile bipyrazoles and the flexible metal–organic framework Co(4,4′-bipyrazolate)

Abstract

A facile route to 4,4′-bipyrazole (H2bpz) and other symmetric bipyrazoles is achieved via the palladium-catalyzed homocoupling of a pyrazole boronic ester in the presence of air and water, enabling us to provide the first crystal structures and evidence of structural phase changes in the bipyrazolate-based metal–organic framework Co(bpz).

Graphical abstract: Palladium-catalyzed oxidative homocoupling of pyrazole boronic esters to access versatile bipyrazoles and the flexible metal–organic framework Co(4,4′-bipyrazolate)

Supplementary files

Article information

Article type
Communication
Submitted
05 Nov 2019
Accepted
19 Dec 2019
First published
19 Dec 2019

Chem. Commun., 2020,56, 1195-1198

Author version available

Palladium-catalyzed oxidative homocoupling of pyrazole boronic esters to access versatile bipyrazoles and the flexible metal–organic framework Co(4,4′-bipyrazolate)

M. K. Taylor, M. Juhl, G. B. Hadaf, D. Hwang, E. Velasquez, J. Oktawiec, J. B. Lefton, T. Runčevski, J. R. Long and J. Lee, Chem. Commun., 2020, 56, 1195 DOI: 10.1039/C9CC08614E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements