Issue 18, 2019, Issue in Progress

Efficient air-stable perovskite solar cells with a (FAI)0.46(MAI)0.40(MABr)0.14(PbI2)0.86(PbBr2)0.14 active layer fabricated via a vacuum flash-assisted method under RH > 50%

Abstract

In this work, we present a new kind of perovskite, (FAI)0.46(MAI)0.40(MABr)0.14(PbI2)0.86(PbBr2)0.14, the vacuum flash-assisted solution processing (VASP) of which can be carried out under relative humidity (RH) higher than 50% in ambient air. The smooth and highly crystalline perovskite showed a maximum PCE of 18.8% in perovskite solar cells. This kind of perovskite was demonstrated to be of good stability in ambient air. Holes and electrons have larger and more balanced diffusion lengths (643.7/621.9 nm) than those in the MAPbI3 perovskite (105.0/129.0 nm) according to the PL quenching experiment. The role of incorporating a large amount of MA+ cations to stabilize the intermediate phase via VASP under high RH is attributed to their better ability to intercalate into the sharing face of the one-dimensional face-sharing [PbI6] octahedra, forming the three-dimensional corner-sharing form. Moreover, hole/electron transfer times at the perovskite/Spiro-OMeTAD (PCBM) interfaces (8.90/9.20 ns) were found to be much larger than those in the MAPbI3 perovskite (0.75/0.40 ns), indicating that there still is enormous potential in further improving the performance of this kind of perovskite solar cell by interfacial engineering.

Graphical abstract: Efficient air-stable perovskite solar cells with a (FAI)0.46(MAI)0.40(MABr)0.14(PbI2)0.86(PbBr2)0.14 active layer fabricated via a vacuum flash-assisted method under RH > 50%

Supplementary files

Article information

Article type
Paper
Submitted
04 Mar 2019
Accepted
25 Mar 2019
First published
01 Apr 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 10148-10154

Efficient air-stable perovskite solar cells with a (FAI)0.46(MAI)0.40(MABr)0.14(PbI2)0.86(PbBr2)0.14 active layer fabricated via a vacuum flash-assisted method under RH > 50%

L. Chen, H. Cao, S. Wang, Y. Luo, T. Tao, J. Sun and M. Zhang, RSC Adv., 2019, 9, 10148 DOI: 10.1039/C9RA01625B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements