Issue 10, 2019

The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics

Abstract

The ortho-directed lithiation of aromatic carbamates and carbonates causes a migration of the substituent from the pendant O group to the adjacent C atom of the aromatic scaffold. This reaction, resulting in the formation of ortho-hydroxycarbonyl compounds, is widely known as the anionic Fries rearrangement, and is described in terms of the migrating group as a 1,3-O→C shift. The intramolecular mechanism allows for a control of regioselectivity by a metalation procedure. Commonly known for the migration of carbonyl groups, the scope has been extended in recent years to Si-, S- and P-based versions, known as the respective anionic sila-, thia- and phospho-Fries rearrangements. Examples of higher homologues, which are sparsely investigated, will also be discussed. Starting with aromatic substrates in the 1980s organometallic backbones, e.g. ferrocenes, have also been introduced, which opened the pathway for stereoselective processes of the Fries rearrangement. Furthermore, related conversions, such as 1,2-, 1,4- (homo-Fries), 1,5- (remote-Fries) and 1,6- as well as, e.g. N→C, and S→C migrations were reported and are included herein. The mechanisms for the Fries rearrangement and competing reactions, e.g. aryne formation, are discussed, based on, e.g., labeling experiments and DFT calculations. Redox-active ferrocenyl derivatives allowed for electrochemical investigations, revealing an influence of the electronic properties of the sandwich unit on the lithiation, rearrangement and post-functionalization behavior of the participating compounds.

Graphical abstract: The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics

Article information

Article type
Review Article
Submitted
10 Dec 2018
First published
08 May 2019

Chem. Soc. Rev., 2019,48, 2829-2882

The anionic Fries rearrangement: a convenient route to ortho-functionalized aromatics

M. Korb and H. Lang, Chem. Soc. Rev., 2019, 48, 2829 DOI: 10.1039/C8CS00830B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements