Issue 32, 2018

Photocrosslinking polymeric ionic liquids via anthracene cycloaddition for organic electronics

Abstract

Polymeric ionic liquids (i.e., PILs) are single ion-conducting materials that exhibit the thermal and electrochemical stability of ionic liquids and the mechanical properties of polymers. Although PILs are exciting for a variety of applications in energy conversion and storage, the tradeoff between mechanics and ion transport remains an important limitation in materials design. Herein, a photocrosslinkable PIL based on the cycloaddition reaction of anthracene is converted from a viscous liquid into a soft solid without detrimental effects on the bulk ionic conductivity. The independent control of mechanical- and ion-conducting properties results from negligible changes in polymer segmental dynamics (i.e., glass transition temperature) upon crosslinking. This was demonstrated for both a polymer (i.e., N = 279) and its corresponding oligomer (i.e., N = 10). The ease of processability facilitated by the presented molecular design is illustrated by both patterning the PIL into μm-sized features, and incorporating it as a dielectric in thin-film transistors for low-voltage operation independent of device fabrication geometry.

Graphical abstract: Photocrosslinking polymeric ionic liquids via anthracene cycloaddition for organic electronics

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2018
Accepted
24 Jul 2018
First published
02 Aug 2018

J. Mater. Chem. C, 2018,6, 8762-8769

Author version available

Photocrosslinking polymeric ionic liquids via anthracene cycloaddition for organic electronics

B. C. Popere, G. E. Sanoja, E. M. Thomas, N. S. Schauser, S. D. Jones, J. M. Bartels, M. E. Helgeson, M. L. Chabinyc and R. A. Segalman, J. Mater. Chem. C, 2018, 6, 8762 DOI: 10.1039/C8TC02561D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements