Issue 23, 2018

Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration

Abstract

Regenerated silk fibroin (SF) from Bombyx mori silkworm cocoons is a highly regarded natural protein-biomaterial suitable for engineering a variety of biological tissues. Electrospinning offers a unique approach to fiber formation that can readily produce micro- and nano-scale fibers recapitulating the ultrastructure of a native extracellular matrix. However, SF fibers from conventional electrospinning suffer from the problem of poor mechanical properties for load-bearing relevant tissue regeneration applications. In this study, highly aligned high-strength SF fibers were fabricated by a recently emerged stable jet electrospinning (SJES) approach, with the aid of high molecular weight poly(ethylene oxide) (PEO) acting as a fiber-forming ingredient to increase control over the jetting instability during electrospinning. The results showed that 90% of the collected SF/PEO (mass ratio 88 : 12) fiber assembly via SJES oriented unidirectionally with an angle variation of <1° and displayed obvious anisotropic wettability. Mechanically, the as-electrospun highly aligned SF/PEO fibers exhibited a 22.0-fold increase in ultimate tensile strength (50.85 ± 1.13 MPa) and a 49.3-fold increase in Young's modulus (1185.99 ± 164.56 MPa) compared with the randomly oriented SF fibers. A subsequent methanol treatment further remarkably boosted the tensile strength to 73.91 ± 5.15 MPa and Young's modulus to 2426.13 ± 86.67 MPa. The mechanical performance of the SF fibers via SJES was also impressive, even when tested in the wet state. The substantial improvement in the mechanical properties of the electrospun SF fibers is attributed to the SJES-enabled higher molecular orientation and contents of the secondary structure (α-helix and β-pleated sheet), as well as the high degree of fiber alignment. Moreover, biological tests verified that these SF-based fibrous scaffolds supported the induced pluripotent stem cell derived mesenchymal stem cells to adhere, migrate and grow in a manner of orienting along the fiber axis. We speculate that these high-performance biomimicking SF fibers might give rise to improved efficacy while being utilized to architecturally regenerate anisotropic load-bearing tissues (e.g., tendon, ligament, and blood vessel).

Graphical abstract: Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration

Supplementary files

Article information

Article type
Paper
Submitted
26 Feb 2018
Accepted
12 May 2018
First published
14 May 2018

J. Mater. Chem. B, 2018,6, 3934-3945

Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration

B. Yi, H. Zhang, Z. Yu, H. Yuan, X. Wang and Y. Zhang, J. Mater. Chem. B, 2018, 6, 3934 DOI: 10.1039/C8TB00535D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements